
Package: funrar (via r-universe)
September 9, 2024

Title Functional Rarity Indices Computation

Version 1.5.0

Description Computes functional rarity indices as proposed by Violle
et al. (2017) <doi:10.1016/j.tree.2017.02.002>. Various indices
can be computed using both regional and local information.
Functional Rarity combines both the functional aspect of rarity
as well as the extent aspect of rarity. 'funrar' is presented
in Grenié et al. (2017) <doi:10.1111/ddi.12629>.

Depends R (>= 3.2.2)

License GPL (>= 2)

LazyData true

Imports cluster, Matrix, methods, stats

URL https://rekyt.github.io/funrar/, https://github.com/Rekyt/funrar

BugReports https://github.com/Rekyt/funrar/issues

RoxygenNote 7.2.1

Suggests ade4, ggplot2, knitr, rmarkdown, testthat (>= 2.99.0),
tidytext

VignetteBuilder knitr

Encoding UTF-8

Roxygen list(markdown = TRUE)

Config/testthat/edition 3

Repository https://rekyt.r-universe.dev

RemoteUrl https://github.com/Rekyt/funrar

RemoteRef HEAD

RemoteSha bf8a1ed53e513aab857a4dacbabfe75d70178fbe

1

https://doi.org/10.1016/j.tree.2017.02.002
https://doi.org/10.1111/ddi.12629
https://rekyt.github.io/funrar/
https://github.com/Rekyt/funrar
https://github.com/Rekyt/funrar/issues


2 combination_trait_dist

Contents
combination_trait_dist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
compute_dist_matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
distinctiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
distinctiveness_alt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
distinctiveness_com . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
distinctiveness_dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
distinctiveness_global . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
distinctiveness_range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
distinctiveness_stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
funrar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
funrar_stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
is_relative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
make_relative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
matrix_to_stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
restrictedness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
restrictedness_stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
scarcity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
scarcity_com . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
scarcity_stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
stack_to_matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
uniqueness_dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
uniqueness_stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Index 28

combination_trait_dist

Compute Multiple distance matrices from a single trait table

Description

Internal function to compute combinations of distance matrices from a data.frame of traits, using
compute_dist_matrix().

Usage

combination_trait_dist(traits_table, ...)

Arguments

traits_table a data.frame of traits with species in row and traits in columns, row names
should be species names,

... additional arguments supplied to compute_dist_matrix()



compute_dist_matrix 3

Value

A list of functional distance matrices, one for each provided trait plus an additional matrix for all
traits taken altogether

compute_dist_matrix Compute a Functional Dissimilarity Matrix

Description

Wrapper for cluster::daisy() function in cluster package, to compute distance matrix of trait
between each pair of species present in given traits_table, each row represents a species and
each column a trait. To be able to compute other metrics traits_table must have species name as
row names.

Usage

compute_dist_matrix(
traits_table,
metric = "gower",
center = FALSE,
scale = FALSE

)

Arguments

traits_table a data.frame of traits with species in row and traits in columns, row names
should be species names,

metric character vector in list 'gower', 'manhattan', 'euclidean' defining the type
of distance to use (see cluster::daisy()), see Details section,

center logical that defines if traits should be centered (only in the case of 'euclidean'
distance)

scale logical that defines if traits should be scaled (only in the case of 'euclidean'
distance)

Details

The functional distance matrix can be computed using any type of distance metric. When traits
are both quantitative and qualitative Gower’s (Gower, 1971; Podani, 1999) distance can be used.
Otherwise, any other distance metric (Euclidean, Manhattan, Minkowski) can be used - as long
as the rows and the columns are named following the species. When using mixed data consider
also Gower’s distance extension by Pavoine et al. (2009). IMPORTANT NOTE: in order to get
functional rarity indices between 0 and 1, the distance metric has to be scaled between 0 and 1.

Value

A functional distance matrix, column and row names follow species name from traits_table
row names.



4 distinctiveness

References

Gower, J.C. (1971) A general coefficient of similarity and some of its
properties. Biometrics, 857–871.

Podani, J. (1999) Extending Gower’s general coefficient of similarity
to ordinal characters. Taxon, 331–340.

Pavoine, S., Vallet, J., Dufour, A.-B., Gachet, S., & Daniel, H. (2009)
On the challenge of treating various types of variables: application for
improving the measurement of functional diversity. Oikos, 118, 391–402.

See Also

cluster::daisy() which this function wraps, base stats::dist() or ade4::dist.ktab() for
Pavoine et al. (2009) extension of Gower’s distance.

Examples

set.seed(1) # For reproducibility
trait = data.frame(

sp = paste("sp", 1:5),
trait_1 = runif(5),
trait_2 = as.factor(c("A", "A", "A", "B", "B")))

rownames(trait) = trait$sp

dist_mat = compute_dist_matrix(trait[, -1])

distinctiveness Functional Distinctiveness on site-species matrix

Description

Computes functional distinctiveness from a site-species matrix (containing presence-absence or
relative abundances) of species with provided functional distance matrix. The sites-species matrix
should have sites in rows and species in columns, similar to vegan package defaults.

Usage

distinctiveness(pres_matrix, dist_matrix, relative = FALSE)

Arguments

pres_matrix a site-species matrix (presence-absence or relative abundances), with sites in
rows and species in columns

dist_matrix a species functional distance matrix



distinctiveness 5

relative a logical indicating if distinctiveness should be scaled relatively to the com-
munity (scaled by max functional distance among the species of the targeted
community)

Details

The Functional Distinctiveness of a species is the average functional distance from a species to all
the other in the given community. It is computed as such:

Di =

∑N
j=0,i̸=j dij

N − 1
,

with Di the functional distinctiveness of species i, N the total number of species in the community
and dij the functional distance between species i and species j. IMPORTANT NOTE: in order to
get functional rarity indices between 0 and 1, the distance metric has to be scaled between 0 and 1.

Value

a similar matrix from provided pres_matrix with Distinctiveness values in lieu of presences or
relative abundances, species absent from communities will have an NA value (see Note section)

Note

Absent species should be coded by 0 or NA in input matrices.

When a species is alone in its community the functional distinctiveness cannot be computed (de-
nominator = 0 in formula), and its value is assigned as NaN.

For speed and memory efficiency sparse matrices can be used as input of the function using as(pres_matrix,
"dgCMatrix") from the Matrix package. (see vignette("sparse_matrices", package = "funrar"))

Examples

data("aravo", package = "ade4")
# Site-species matrix
mat = as.matrix(aravo$spe)

# Compute relative abundances
mat = make_relative(mat)

# Example of trait table
tra = aravo$traits[, c("Height", "SLA", "N_mass")]
# Distance matrix
dist_mat = compute_dist_matrix(tra)

di = distinctiveness(pres_matrix = mat, dist_matrix = dist_mat)
di[1:5, 1:5]

# Compute distinctiveness for all species in the regional pool
# i.e., with all the species in all the communities
# Here considering each species present evenly in the regional pool
reg_pool = matrix(1, ncol = ncol(mat))
colnames(reg_pool) = colnames(mat)



6 distinctiveness_alt

row.names(reg_pool) = c("Regional_pool")

reg_di = distinctiveness(reg_pool, dist_mat)

distinctiveness_alt Truncated Functional Distinctiveness

Description

Computes functional distinctiveness from a site-species matrix (containing presence-absence or
relative abundances) of species with provided functional distance matrix considering only species
within a given range in the functional space. Basically species are cutoff when their dissimilarity
is above the input threshold. The sites-species matrix should have sites in rows and species in
columns, similar to vegan package defaults.

Usage

distinctiveness_alt(pres_matrix, dist_matrix, given_range)

Arguments

pres_matrix a site-species matrix (presence-absence or relative abundances), with sites in
rows and species in columns

dist_matrix a species functional distance matrix

given_range a numeric indicating the dissimilarity range at which the the other species are
considered maximally dissimilar

Details

The Functional Distinctiveness of a species is the average functional distance from a species to all
the other in the given community. It is computed as such:

Di(T ) =

S∑
j=1 ,j ̸=i

[
dij

T + θ(dij − T )
(
1− dij

T

)]
S − 1

with Di the functional distinctiveness of species i, N the total number of species in the community
and dij the functional distance between species i and species j. T is the chosen maximal range
considered. The function θ(dij − T ) is an indicator function that returns 1 when dij ≥ T and 0
when dij < T . IMPORTANT NOTE: in order to get functional rarity indices between 0 and 1, the
distance metric has to be scaled between 0 and 1.

Value

a similar matrix from provided pres_matrix with Distinctiveness values in lieu of presences or
relative abundances, species absent from communities will have an NA value (see Note section)



distinctiveness_com 7

Note

Absent species should be coded by 0 or NA in input matrices.

When a species is alone in its community the functional distinctiveness cannot be computed (de-
nominator = 0 in formula), and its value is assigned as NaN.

For speed and memory efficiency sparse matrices can be used as input of the function using as(pres_matrix,
"dgCMatrix") from the Matrix package. (see vignette("sparse_matrices", package = "funrar"))

distinctiveness_com Functional Distinctiveness for a single community

Description

Given a stacked data.frame and a distance matrix compute the functional distinctiveness for a single
community. Functional distinctiveness relates to the functional "originality" of a species in a com-
munity. The closer to 1 the more the species is functionally distinct from the rest of the community.
See distinctiveness() function or the functional rarity indices vignette included in the package
(type vignette("rarity_indices", package = "funrar")), for more details on the metric. IM-
PORTANT NOTE: in order to get functional rarity indices between 0 and 1, the distance metric
has to be scaled between 0 and 1.

Usage

distinctiveness_com(
com_df,
sp_col,
abund = NULL,
dist_matrix,
relative = FALSE

)

Arguments

com_df a stacked (= tidy) data.frame from a single community with each row represent-
ing a species in a community

sp_col a character vector, the name of the species column in com_df

abund a character vector, the name of the column containing relative abundances values

dist_matrix a functional distance matrix as given by compute_dist_matrix(), with species
name as row and column names

relative a logical indicating if distinctiveness should be scaled relatively to the com-
munity (scaled by max functional distance among the species of the targeted
community)

Value

the same data.frame with the additional Di column giving functional distinctiveness values for each
species



8 distinctiveness_dimensions

Caution

This function is meant for internal uses mostly, thus it does not include any tests on inputs and may
fail unexpectedly. Please use distinctiveness_stack() to avoid input errors.

See Also

scarcity_com(), vignette("rarity_indices", package = "funrar") and distinctiveness()
Details section for detail on the index

distinctiveness_dimensions

Distinctiveness across combinations of traits

Description

From a trait data.frame and a site-species matrix compute Distinctiveness (average pairwise func-
tional distance) for each species in each community on each provided trait and on all traits taken
altogether.

Usage

distinctiveness_dimensions(pres_matrix, traits_table, ...)

Arguments

pres_matrix a site-species matrix, with species in rows and sites in columns, containing
presence-absence, relative abundances or abundances values

traits_table a data.frame of traits with species in row and traits in columns, row names
should be species names,

... additional arguments supplied to compute_dist_matrix()

Value

a list of site-species matrix with functional distinctiveness values per species per site, with elements
Di_X for distinctiveness computed on trait X and Di_all for distinctiveness computed on all traits.

See Also

uniqueness_dimensions(), distinctiveness(), distinctiveness_stack() and compute_dist_matrix()
for additional arguments



distinctiveness_global 9

Examples

data("aravo", package = "ade4")

# Site-species matrix
mat = as.matrix(aravo$spe)
rel_mat = make_relative(mat)

# Example of trait table
tra = aravo$traits[, c("Height", "SLA", "N_mass")]

di_dim = distinctiveness_dimensions(rel_mat, tra)

distinctiveness_global

Global/Regional Functional Distinctiveness from dissimilarity matrix

Description

Given a distance (or dissimilarity) matrix or dist() objects compute regional/global level distinc-
tiveness as if all species were present in the same community.

Usage

distinctiveness_global(dist_obj, di_name = "global_di")

Arguments

dist_obj a functional distance matrix as given by compute_dist_matrix(), with species
name as row and column names or a dist() object with species names as
labels()

di_name a character vector giving the name of the distinctiveness column in the final
data.frame (default: global_di)

Value

a data.frame with two columns: by default species that contains the species names and global_di
that contains the distinctiveness values. The first column that contains species names can renamed
based on dist_obj dimnames, while the second column is renamed through the di_name argument.‘

See Also

vignette("rarity_indices", package = "funrar") and distinctiveness() Details section
for detail on the index



10 distinctiveness_range

distinctiveness_range Alternative Truncated Functional Distinctiveness

Description

Computes functional distinctiveness from a site-species matrix (containing presence-absence or
relative abundances) of species with provided functional distance matrix considering only species
within a given range in the functional space. The sites-species matrix should have sites in rows
and species in columns, similar to vegan package defaults.

Usage

distinctiveness_range(pres_matrix, dist_matrix, given_range, relative = FALSE)

Arguments

pres_matrix a site-species matrix (presence-absence or relative abundances), with sites in
rows and species in columns

dist_matrix a species functional distance matrix
given_range a numeric indicating the dissimilarity range at which the the influence of other

species is not considered anymore
relative a logical indicating if distinctiveness should be scaled relatively to the com-

munity (scaled by max functional distance among the species of the targeted
community)

Details

The Functional Distinctiveness of a species is the average functional distance from a species to all
the other in the given community. It is computed as such:

Di(T ) = 1 if T < min(dij), Di(T ) =


S∑

j=1 ,j ̸=i ,dij≤T

dij ×Abj

S∑
j=1 ,j ̸=i ,dij≤T

Abj

×

1−

S∑
j=1 ,j ̸=i ,dij≤T

Abj

N

 if T ≥ min(dij),

with Di the functional distinctiveness of species i, N the total number of species in the community
and dij the functional distance between species i and species j. T is the chosen maximal range

considered. When presence-absence are used Abj = 1/N and the term

1−

S∑
j=1 ,j ̸=i ,dij≤T

Abj

N


is replaced by 1. IMPORTANT NOTE: in order to get functional rarity indices between 0 and 1,
the distance metric has to be scaled between 0 and 1.

Value

a similar matrix from provided pres_matrix with Distinctiveness values in lieu of presences or
relative abundances, species absent from communities will have an NA value (see Note section)



distinctiveness_stack 11

Note

Absent species should be coded by 0 or NA in input matrices.

When a species is alone in its community the functional distinctiveness cannot be computed (de-
nominator = 0 in formula), and its value is assigned as NaN.

For speed and memory efficiency sparse matrices can be used as input of the function using as(pres_matrix,
"dgCMatrix") from the Matrix package. (see vignette("sparse_matrices", package = "funrar"))

Examples

data("aravo", package = "ade4")
# Site-species matrix
mat = as.matrix(aravo$spe)

# Compute relative abundances
mat = make_relative(mat)

# Example of trait table
tra = aravo$traits[, c("Height", "SLA", "N_mass")]
# Distance matrix
dist_mat = compute_dist_matrix(tra)

di = distinctiveness_range(pres_matrix = mat, dist_matrix = dist_mat, 0.2)
di[1:5, 1:5]

distinctiveness_stack Functional Distinctiveness on a stacked data.frame

Description

Compute Functional Distinctiveness for several communities, from a stacked (or tidy) data.frame of
communities, with one column for species identity, one for community identity and an optional one
for relative abundances. Also needs a species functional distances matrix. Functional distinctiveness
relates to the functional "originality" of a species in a community. The closer to 1 the more the
species is functionally distinct from the rest of the community. See distinctiveness() function or
the functional rarity indices vignette included in the package (type vignette("rarity_indices",
package = "funrar")), for more details on the metric. IMPORTANT NOTE: in order to get
functional rarity indices between 0 and 1, the distance metric has to be scaled between 0 and 1. You
can either use _stack() or _tidy() functions as they are aliases of one another.

Usage

distinctiveness_stack(
com_df,
sp_col,
com,
abund = NULL,



12 distinctiveness_stack

dist_matrix,
relative = FALSE

)

distinctiveness_tidy(
com_df,
sp_col,
com,
abund = NULL,
dist_matrix,
relative = FALSE

)

Arguments

com_df a stacked (= tidy) data.frame from a single community with each row represent-
ing a species in a community

sp_col a character vector, the name of the species column in com_df

com a character vector, the column name for communities names

abund a character vector, the name of the column containing relative abundances values

dist_matrix a functional distance matrix as given by compute_dist_matrix(), with species
name as row and column names

relative a logical indicating if distinctiveness should be scaled relatively to the com-
munity (scaled by max functional distance among the species of the targeted
community)

Value

the same data.frame with the additional Di column giving functional distinctiveness values for each
species

See Also

scarcity_stack(), uniqueness_stack(), restrictedness_stack(); distinctiveness() De-
tails section for detail on the index

Examples

data("aravo", package = "ade4")

# Example of trait table
tra = aravo$traits[, c("Height", "SLA", "N_mass")]
# Distance matrix
dist_mat = compute_dist_matrix(tra)

# Site-species matrix converted into data.frame
mat = as.matrix(aravo$spe)
mat = make_relative(mat)
dat = matrix_to_stack(mat, "value", "site", "species")



funrar 13

dat$site = as.character(dat$site)
dat$species = as.character(dat$species)

di_df = distinctiveness_stack(dat, "species", "site", "value", dist_mat)
head(di_df)

funrar Compute all Functional Rarity Indices from Matrices

Description

From a site-species matrix and functional distance matrix compute all indices included in the pack-
age: functional uniqueness (regional, functional), functional distinctiveness (local, functional), ge-
ographical restrictedness (regional, extent), scarcity (local, abundance). Note: scarcity can only be
computed if relative abundances are provided in the site-species matrix.

Usage

funrar(pres_matrix, dist_matrix, rel_abund = FALSE)

Arguments

pres_matrix a site-species matrix (presence-absence or relative abundances), with sites in
rows and species in columns

dist_matrix a species functional distance matrix

rel_abund logical (TRUE or FALSE) indicating if site-species matrix contain relative abun-
dances values or only presence-absence data (default = FALSE)

Value

A list of 3 objects (or 4 if rel_abund = TRUE):

Ui a vector containing uniqueness values per species,

Di a site-species matrix with functional distinctiveness values per species per site,

Ri a vector containing geographical restrictedness values per species,

and if rel_abund = TRUE,

Si a site-species matrix with scarcity values per species per site.

See Also

uniqueness(), distinctiveness(), restrictedness(), scarcity()



14 funrar_stack

funrar_stack Compute all Functional Rarity Indices from stacked data.frames

Description

From a stacked (= tidy) data.frame and functional distance matrix compute all indices included in
the package: functional uniqueness (regional, functional), functional distinctiveness (local, func-
tional), geographical restrictedness (regional, extent), scarcity (local, abundance). Note: scarcity
can only be computed if relative abundances are provided in the data.frame.

Usage

funrar_stack(com_df, sp_col, com, abund = NULL, dist_matrix)

Arguments

com_df a stacked (= tidy) data.frame from a single community with each row represent-
ing a species in a community

sp_col a character vector, the name of the species column in com_df

com a character vector, the column name for communities names

abund a character vector, the name of the column containing relative abundances values

dist_matrix a functional distance matrix as given by compute_dist_matrix(), with species
name as row and column names

Value

A list of 3 objects (or 4 if abund is not NULL):

Ui a vector containing uniqueness values per species,

Di a site-species matrix with functional distinctiveness values per species per site,

Ri a vector containing geographical restrictedness values per species,

and if abund is not NULL,

Si a site-species matrix with scarcity values per species per site.

See Also

uniqueness_stack(), distinctiveness_stack(), restrictedness_stack(), scarcity_stack()



is_relative 15

is_relative Tell if matrix or data.frame has relative abundances

Description

From an abundance/presence-absence matrix or data.frame tells if it contains relative abundances
or absolute abundances. Checks if all abundances are between 1 and 0 but never checks sum of
abundances per community.

Usage

is_relative(given_obj, abund = NULL)

Arguments

given_obj abundance or presence-absence matrix, with sites in rows and species in columns,
or tidy community data frame

abund name of the column of the provided object that contains the abundances

Value

TRUE if the input has relative abundances FALSE otherwise

See Also

make_relative() to transform matrix into a relative abundance matrix.

Examples

data("aravo", package = "ade4")

# Site-species matrix
mat = as.matrix(aravo$spe)
head(mat)[, 1:5] # Has absolute abundances
rel_mat = make_relative(mat)
head(rel_mat) # Relative abundances

# Forced to use ':::' becasue function is not exported
funrar:::is_relative(mat) # FALSE
funrar:::is_relative(rel_mat) # TRUE



16 matrix_to_stack

make_relative Relative abundance matrix from absolute abundance matrix

Description

From an abundance matrix (numbers of individuals of a given species at a site) returns a relative
abundance matrix (proportion of individuals of a given species at a given site). This function works
also with sparse matrices.

Usage

make_relative(abund_matrix)

Arguments

abund_matrix abundance matrix, with sites in rows and species in columns.

Value

Similar shaped matrix as the input but with relative abundances instead

Examples

data("aravo", package = "ade4")

# Site-species matrix
mat = as.matrix(aravo$spe)
head(mat)[, 1:5] # Has absolute abundances
rel_mat = make_relative(mat)
head(rel_mat) # Relative abundances

matrix_to_stack Matrix to stacked (= tidy) data.frame

Description

From a matrix with values to a stacked (= tidy) data.frame, exclude NA from given data.frame. If
supplied object is not a matrix, try to coerce object to matrix first. matrix_to_tidy() is an alias
of this function.

Usage

matrix_to_stack(
my_mat,
value_col = "value",
row_to_col = names(dimnames(my_mat))[1],
col_to_col = names(dimnames(my_mat))[2]

)



restrictedness 17

Arguments

my_mat matrix you want to transform in stacked (= tidy) data.frame

value_col (optional) character vector to use for value column (default: ’value’)

row_to_col (optional) character vector used for name of column in data.frame corresponding
to rows in matrix (default: corresponding dimension name)

col_to_col (optional) character vector used for name of column in data.frame corresponding
to columns in matrix (default: corresponding dimension name)

Value

a stacked (= tidy) data.frame with, a column for row names, one for column names and a third one
for the values.

See Also

stack_to_matrix() for the reverse operation

Examples

data("aravo", package = "ade4")

# Site-species matrix converted into data.frame
mat = as.matrix(aravo$spe)
dat = matrix_to_stack(mat, "value", "site", "species")
str(dat)

restrictedness Geographical Restrictedness on site-species matrix

Description

Computes geographical restrictedness from a site-species matrix. Geographical restrictedness is an
index related to the extent of a species in a given dataset, it is close to 1 when the species is present
in only a single site of the dataset (restricted) and close to 0 when the species is present at all sites.
It estimates the geographical extent of a species in a dataset. See Details section to have details
on the formula used for the computation. The sites-species matrix should have sites in rows and
species in columns, similar to vegan package defaults.

Usage

restrictedness(pres_matrix, relative = FALSE)



18 restrictedness

Arguments

pres_matrix a site-species matrix, with species in rows and sites in columns, containing
presence-absence, relative abundances or abundances values

relative a logical (default = FALSE), indicating if restrictedness should be computed
relative to restrictedness from a species occupying a single site

Details

Geographical Restrictedness aims to measure the regional extent of a species in funrar it is com-
puted the simplest way possible: a ratio of the number of sites where a species is present over the
total number of sites in the dataset. We take this ratio off 1 to have a index between 0 and 1 that
represents how restricted a species is:

Ri = 1− Ni

Ntot
,

where Ri is the geographical restrictedness value, Ni the total number of sites where species i
occur and Ntot the total number of sites in the dataset. When relative = TRUE, restrictedness is
computed relatively to the restrictedness of a species present in a single site:

Ri =
Ri

Rone

Ri =
1− Ki

Ktot

1− 1
Ktot

Ri =
Ktot−Ki

Ktot− 1

Other approaches can be used to measure the geographical extent (convex hulls, occupancy models,
etc.) but for the sake of simplicity only the counting method is implemented in funrar.

Value

A stacked data.frame containing species’ names and their restrictedness value in the Ri column,
similar to what uniqueness() returns.

Examples

data("aravo", package = "ade4")
# Site-species matrix
mat = as.matrix(aravo$spe)
ri = restrictedness(mat)
head(ri)



restrictedness_stack 19

restrictedness_stack Geographical Restrictedness for stacked data.frame

Description

Compute the geographical restrictedness for each species present in the stacked data.frame. Geo-
graphical restrictedness is an index related to the extent of a species in a given dataset, it is close
to 1 when the species is present in only a single site of the dataset (restricted) and close to 0 when
the species is present at all sites. It estimates the geographical extent of a species in a dataset.
See restrictedness() for details on restrictedness computation. You can either use _stack() or
_tidy() functions as they are aliases of one another.

Usage

restrictedness_stack(com_df, sp_col, com, relative = FALSE)

restrictedness_tidy(com_df, sp_col, com, relative = FALSE)

Arguments

com_df a stacked (= tidy) data.frame of communities

sp_col a character vector indicating the name of the species column

com a character vector indicating the name of the community column

relative a logical (default = FALSE), indicating if restrictedness should be computed
relative to restrictedness from a species occupying a single site

Value

A stacked data.frame containing species’ names and their restrictedness value in the Ri column,
similar to what uniqueness_stack() returns.

See Also

restrictedness(), uniqueness_stack()

Examples

data("aravo", package = "ade4")

# Site-species matrix converted into data.frame
mat = as.matrix(aravo$spe)
dat = matrix_to_stack(mat, "value", "site", "species")
dat$site = as.character(dat$site)
dat$species = as.character(dat$species)
ri_df = restrictedness_stack(dat, "species", "site")
head(ri_df)



20 scarcity

scarcity Scarcity on site-species matrix

Description

Computes scarcity from a relative abundance matrix of species. Scarcity is close to 1 when a
species is rare in a community and close to 0 when it is abundant. It requires a site-species matrix
with relative abundances. See Details section for the formula. The sites-species matrix should
have sites in rows and species in columns, similar to vegan package defaults.

Usage

scarcity(pres_matrix)

Arguments

pres_matrix a site-species matrix, with species in rows and sites in columns, containing rel-
ative abundances values

Details

The scarcity of species is computed as follow:

Si = exp−N log 2Ai,

with Si the scarcity of species i, N the total number of species in the community and Ai the relative
abundance of species i in the community. Scarcity is thus a measure of the local rarity in terms of
abundances. If Si is close to 1 the species has a very low abundances while if it’s close to 0, it is
quite abundant in the community.

Value

a similar matrix to pres_matrix with scarcity values in lieu of relative abundances.

See Also

vignette("rarity_indices", package = "funrar") for details on the scarcity metric; distinctiveness(),
restrictedness(), uniqueness()

Examples

data("aravo", package = "ade4")
# Site-species matrix
mat = as.matrix(aravo$spe)
mat = make_relative(mat)

si = scarcity(pres_matrix = mat)
si[1:5, 1:5]



scarcity_com 21

scarcity_com Scarcity for a single community

Description

Given a stacked data.frame compute species scarcity. Scarcity measures how abundant is a species
locally. Scarcity is close to 1 when a species is rare in a community and close to 0 when it is
abundant. See scarcity() function or the functional rarity indices vignette included in the package
(type vignette("rarity_indices", package = "funrar")) for details about the index.

Usage

scarcity_com(com_df, sp_col, abund)

Arguments

com_df a stacked (= tidy) data.frame from a single community with each row represent-
ing a species in a community

sp_col a character vector, the name of the species column in com_df

abund a character vector, the name of the column containing relative abundances values

Value

the same data.frame with the additional Si column giving scarcity values for each species

Caution

This function is meant for internal uses mostly, thus it does not include any tests on inputs and may
fail unexpectedly. Please use scarcity_stack() to avoid input errors.

See Also

scarcity() and vignette("rarity_indices", package = "funrar") for details on the scarcity
metric; distinctiveness_com() to compute distinctiveness on a single community

Examples

data("aravo", package = "ade4")

# Site-species matrix converted into data.frame
mat = as.matrix(aravo$spe)
mat = make_relative(mat)
dat = matrix_to_stack(mat, "value", "site", "species")
dat$site = as.character(dat$site)
dat$species = as.character(dat$species)

si_df = scarcity_com(subset(dat, site == "AR07"), "species", "value")
head(si_df)



22 scarcity_stack

scarcity_stack Scarcity on a stacked data.frame

Description

Compute scarcity values for several communities. Scarcity computation requires relative abun-
dances. Scarcity is close to 1 when a species is rare in a community and close to 0 when it is
abundant. See scarcity() function or the functional rarity indices vignette included in the pack-
age (type vignette("rarity_indices", package = "funrar")) for details about the index. You
can either use _stack() or _tidy() functions as they are aliases of one another.

Usage

scarcity_stack(com_df, sp_col, com, abund)

scarcity_tidy(com_df, sp_col, com, abund)

Arguments

com_df a stacked (= tidy) data.frame from a single community with each row represent-
ing a species in a community

sp_col a character vector, the name of the species column in com_df

com a character vector indicating the column name of communities ID in com_df

abund a character vector, the name of the column containing relative abundances values

Value

The same table as com_df with an added Si column for Scarcity values.

See Also

scarcity() and vignette("rarity_indices", package = "funrar") for details on the scarcity
metric; distinctiveness_stack(), restrictedness_stack(), uniqueness_stack()

Examples

data("aravo", package = "ade4")

# Site-species matrix converted into data.frame
mat = as.matrix(aravo$spe)
mat = make_relative(mat)
dat = matrix_to_stack(mat, "value", "site", "species")
dat$site = as.character(dat$site)
dat$species = as.character(dat$species)

si_df = scarcity_stack(dat, "species", "site", "value")
head(si_df)



stack_to_matrix 23

stack_to_matrix Stacked (= tidy) data.frame to matrix

Description

Passes from a stacked (= tidy) data.frame to a matrix. tidy_to_matrix() is an alias of this func-
tion.

Usage

stack_to_matrix(
my_df,
col_to_row,
col_to_col,
col_value = NULL,
sparse = FALSE

)

Arguments

my_df data.frame you want to transform in matrix

col_to_row character vector of the name of the data.frame column you want to put into
matrix rows

col_to_col character vector of the name of the data.frame column you want to be as columns
in matrix

col_value (optional, default = NULL) character vector indicating the name of a column cod-
ing the values that will be put in the matrix

sparse (optional, default = FALSE) logical indicating whether to return a sparse matrix
(if TRUE requires tidytext package)

Value

a matrix with given col_to_row column in rows and col_to_col column in columns. If some cells
are not present in the data.frame (e.g. some species not present at some sites), the matrix will have
a NA value.

See Also

matrix_to_stack() for the reverse operation

Examples

example = data.frame("sites" = c(rep("1", 3), rep("2", 2)),
"species" = c("A", "B", "C", "B", "D"),
"abundance" = c(0.33, 0.33, 0.33, 0.4, 0.6))

mat = stack_to_matrix(example, "sites", "species", "abundance")

https://cran.r-project.org/package=tidytext


24 uniqueness

mat

uniqueness Functional Uniqueness for site-species matrix matrix

Description

Computes the functional uniqueness from a site-species matrix with the provided functional dis-
tance matrix. Functional Uniqueness represents how "isolated" is a species in the global species
pool, it is the functional distance to the nearest neighbor of the species of interest (see Details sec-
tion for the formula). The sites-species matrix should have sites in rows and species in columns,
similar to vegan package defaults.

Usage

uniqueness(pres_matrix, dist_matrix)

Arguments

pres_matrix a site-species matrix (presence-absence or relative abundances), with sites in
rows and species in columns

dist_matrix a species functional distance matrix

Details

Functional Uniqueness Ui is computed as follow:

Ui = min(dij)∀j, j ̸= i,

with Ui the functional uniqueness of species i, and dij the functional distance between species i
and species j

Value

A data.frame with functional uniqueness values per species, with one column with provided species
column name and the Ui column with functional uniqueness values.

See Also

distinctiveness(), restrictedness(), scarcity()



uniqueness_dimensions 25

Examples

data("aravo", package = "ade4")

# Site-species matrix
mat = as.matrix(aravo$spe)
colnames(mat) = as.character(colnames(mat))

# Example of trait table
tra = aravo$traits[, c("Height", "SLA", "N_mass")]
# Distance matrix
dist_mat = compute_dist_matrix(tra)

ui = uniqueness(mat, dist_mat)
head(ui)

# Computing uniqueness for each community
com_ui = apply(mat, 1,

function(x, dist_m) {
smaller_com = x[x > 0 & !is.na(x)]
uniqueness(t(as.matrix(smaller_com)), dist_m)

}, dist_m = dist_mat)

uniqueness_dimensions Uniqueness across combinations of traits

Description

From a trait table and a site-species matrix compute Uniqueness (nearest functional distance) for
each species and each trait, plus computes it for all the traits.

Usage

uniqueness_dimensions(pres_matrix, traits_table, ...)

Arguments

pres_matrix a site-species matrix, with species in rows and sites in columns, containing
presence-absence, relative abundances or abundances values

traits_table a data.frame of traits with species in row and traits in columns, row names
should be species names,

... additional arguments supplied to compute_dist_matrix()

Value

a data.frame containing species’ names and their uniqueness values for each traits (Ui_X column
for trait X), as well as a column for the uniqueness value for all traits (Ui_all column)



26 uniqueness_stack

See Also

distinctiveness_dimensions(), uniqueness(), uniqueness_stack() and compute_dist_matrix()
for additional arguments

Examples

data("aravo", package = "ade4")

# Site-species matrix
mat = as.matrix(aravo$spe)
rel_mat = make_relative(mat)

# Example of trait table
tra = aravo$traits[, c("Height", "SLA", "N_mass")]

ui_dim = uniqueness_dimensions(rel_mat, tra)

uniqueness_stack Functional Uniqueness on stacked data.frame

Description

Computes functional uniqueness values over a given regional pool. Functional uniqueness gives
the functional distance to the nearest-neighbor of a given species in the provided distance matrix.
See uniqueness() function for details on computation. You can either use _stack() or _tidy()
functions as they are aliases of one another.

Usage

uniqueness_stack(com_df, sp_col, dist_matrix)

uniqueness_tidy(com_df, sp_col, dist_matrix)

Arguments

com_df a data frame of the species in the regional pool.

sp_col a character vector indicating the name of the species column in the com_df data
frame

dist_matrix a functional distance matrix

Value

A data.frame with uniqueness value per species, with one column with provided species column
name and the Ui column with the uniqueness values.



uniqueness_stack 27

See Also

uniqueness() and vignette("rarity_indices", package = "funrar") for details on the unique-
ness metric; distinctiveness_stack(), restrictedness_stack(), scarcity_stack()

Examples

data("aravo", package = "ade4")

# Site-species matrix converted into data.frame
mat = as.matrix(aravo$spe)
dat = matrix_to_stack(mat, "value", "site", "species")
dat$site = as.character(dat$site)
dat$species = as.character(dat$species)

# Example of trait table
tra = aravo$traits[, c("Height", "SLA", "N_mass")]
# Distance matrix
dist_mat = compute_dist_matrix(tra)

ui_df = uniqueness_stack(dat, "species", dist_mat)
head(ui_df)



Index

ade4::dist.ktab(), 4

cluster::daisy(), 3, 4
combination_trait_dist, 2
compute_dist_matrix, 3
compute_dist_matrix(), 2, 8, 25, 26

distance_matrix (compute_dist_matrix), 3
distinctiveness, 4
distinctiveness(), 7–9, 11–13, 20, 24
distinctiveness_alt, 6
distinctiveness_com, 7
distinctiveness_com(), 21
distinctiveness_dimensions, 8
distinctiveness_dimensions(), 26
distinctiveness_global, 9
distinctiveness_range, 10
distinctiveness_stack, 11
distinctiveness_stack(), 8, 14, 22, 27
distinctiveness_tidy

(distinctiveness_stack), 11

funrar, 13
funrar_stack, 14

is_relative, 15

make_relative, 16
make_relative(), 15
matrix_to_stack, 16
matrix_to_stack(), 23
matrix_to_tidy (matrix_to_stack), 16

restrictedness, 17
restrictedness(), 13, 19, 20, 24
restrictedness_stack, 19
restrictedness_stack(), 12, 14, 22, 27
restrictedness_tidy

(restrictedness_stack), 19

scarcity, 20

scarcity(), 13, 21, 22, 24
scarcity_com, 21
scarcity_com(), 8
scarcity_stack, 22
scarcity_stack(), 12, 14, 21, 27
scarcity_tidy (scarcity_stack), 22
stack_to_matrix, 23
stack_to_matrix(), 17
stats::dist(), 4

tidy_to_matrix (stack_to_matrix), 23

uniqueness, 24
uniqueness(), 13, 18, 20, 26, 27
uniqueness_dimensions, 25
uniqueness_dimensions(), 8
uniqueness_stack, 26
uniqueness_stack(), 12, 14, 19, 22, 26
uniqueness_tidy (uniqueness_stack), 26

28


	combination_trait_dist
	compute_dist_matrix
	distinctiveness
	distinctiveness_alt
	distinctiveness_com
	distinctiveness_dimensions
	distinctiveness_global
	distinctiveness_range
	distinctiveness_stack
	funrar
	funrar_stack
	is_relative
	make_relative
	matrix_to_stack
	restrictedness
	restrictedness_stack
	scarcity
	scarcity_com
	scarcity_stack
	stack_to_matrix
	uniqueness
	uniqueness_dimensions
	uniqueness_stack
	Index

