Title: | Test Effect of Traits of FD-Environment Relationship |
---|---|
Description: | Companion code for paper XXX <doi:xxx> on FD-Environment relationship, which tests to what extent we can expect FD-Environment trait relationship in function of number of traits included and type of environmental filtering. |
Authors: | Matthias Grenié [aut, cre, cph] , François Munoz [aut] , Cyrille Violle [aut] |
Maintainer: | Matthias Grenié <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.0.0.9000 |
Built: | 2024-11-04 03:18:55 UTC |
Source: | https://github.com/Rekyt/fddimensionality_ms |
Compute Functional Diversity Using All Dissimilarities
compute_dissim_di(trait_dissim_list, site_sp_df, trait_comb_df)
compute_dissim_di(trait_dissim_list, site_sp_df, trait_comb_df)
trait_dissim_list |
[ |
site_sp_df |
[ |
trait_comb_df |
[ |
Wrapper around FD::dbFD()
compute_other_fd(site_sp_df, trait_comb, trait_df, var_type = "env")
compute_other_fd(site_sp_df, trait_comb, trait_df, var_type = "env")
site_sp_df |
[ |
trait_comb |
[ |
trait_df |
[ |
var_type |
[ |
For each provided trait combination in a list, returns a list of
dissimilarity matrices computed using funrar
. This function computes
euclidean dissimilarity matrices
compute_trait_dissim(trait_comb_list, trait_df)
compute_trait_dissim(trait_comb_list, trait_df)
trait_comb_list |
[ |
trait_df |
[ |
a list of dissimilarity matrices with concatenated names from trait combinations
Generate uncorrelated traits
generate_traits(n_species, n_traits)
generate_traits(n_species, n_traits)
n_species |
[ |
n_traits |
[ |
a matrix with n_species
rows and n_traits
column with uniform
uncorrelated traits between 0 and 1
generate_traits(3, 2)
generate_traits(3, 2)
Contains Local vs. Global drake workflow
global_workflow()
global_workflow()
Figure of FD vs. Environment Comparing Observed and SES values
plot_env_fd_obs_ses_two(full_fd_df)
plot_env_fd_obs_ses_two(full_fd_df)
full_fd_df |
[ |
With a numeric vector scale between zero and one.
scale_zero_one(vec)
scale_zero_one(vec)
vec |
a numeric vector |
vec = stats::rnorm(1000) zero_one = scale_zero_one(vec) range(vec) range(zero_one)
vec = stats::rnorm(1000) zero_one = scale_zero_one(vec) range(vec) range(zero_one)